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Abstract
The analytical transfer matrix method is applied to the evaluation of the
tunnelling in the semiconductor heterostructures. An analytical formula of
the transmission probabilities across arbitrary shaped potential barriers which
includes the variations of the effective masses has been developed in this
paper. Various potential barrier structures are analysed and the results are
of high precision. Tunnelling resonance is obtained for the double-barrier
structure. We can correlate the energy location of the peaks of the transmission
probability with the bound state energies of the included potential wells through
our analytical transfer matrix method.

PACS numbers: 73.40.Gk, 73.40.Lq, 85.30.De

1. Introduction

With recent advances in semiconductor growth techniques, it has become possible to fabricate
multiple barriers and periodic potential structures of good quality. Fabrication of these
structures results in a considerable increase in research activity towards the development
of novel optoelectronic devices [1, 2]. To understand the physics properties of these
heterostructure devices, one has to get the tunnelling properties for different systems. Recently,
resonant tunnelling through single-barrier heterostructures, double-barrier structures and
multibarrier systems has been widely investigated [3–7]. A knowledge of the tunnelling
coefficient is an important factor, for example, to determine the I–V characters of these devices.
Tunnelling provides insight into many interesting processes such as lasing in quantum-well
laser structures and electron transport in planar doped barrier devices. Investigation of the
transmission probabilities helps to develop the heterostructure devices inversely.

Several methods have been reported in the calculation of the transmission probability
across the potential barriers [8, 9]. The conventional method of determining the transmission
probability is the WKB approximation method. However, it does not take into account
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the detailed structure of a given potential below the incident electron energy, and it fails to
predict the fine structures of the transmission probability. Airy’s function-based computations
result in numerical overflow which significantly reduces the computational efficiency of the
method at low-applied biases [10, 11]. Many other methods dealing with these problems
are cumbersome to implement, such as Monte Carlo method and the finite element method.
Some other methods have been developed in the calculation of the transmission probability
in recent years. For an example, equivalent transmission-line model is used to analyse
resonant tunnelling in multilayered heterostructures [12], and the transfer matrix method
in terms of Airy’s functions is improved to eliminate the numerical problems which arise
in the computation of the transmission coefficient [13]. In this paper we use the analytical
transfer matrix method to determine the tunnelling coefficients for any shaped potential barriers
explicitly. Our method is not a matrix manipulation involving straightforward multiplication
of matrices, as general transfer matrix methods do [14]. We present an exact analytical
formula on the basis of the transfer matrix method. Furthermore, the variation of the effective
mass is directly included into the analytical formula, by which we can explore the tunnelling
probabilities for any structure made of arbitrary semiconductor materials. The analytical
transfer matrix method is easy to implement and gives results of high accuracy, which is more
than sufficient for most applications.

2. Theory

In the effective-mass approximation, the time-independent Schrödinger equation in one
dimension is given by[

− d

dx

h̄2

2m(x)

d

dx
+ V (x)

]
ψ(x) = Eψ(x), (1)

where the variation in space of the particle’s effective mass is expressed by m(x), and
h̄ = h/2π, h being Planck’s constant. V (x) represents the potential energy variation. E
and ψ(x) represent the energy and wavefunction. For a potential barrier with the mass
dependent on the position, the transmission probability may be determined by solving the
time-independent Schrödinger equation.

Consider a potential barrier with an arbitrary potential V (x) in the region xb � x � xf

and with constant potential in the regions x < xb and x > xf . The dependence of the mass
on the position is m(x). In the present calculation, we first divide the potential barrier and
the position-dependent mass into segments; in every segment the potential energy V (xi) and
the effective mass m(xi) can be regarded as constants. In the limit, as the divisions become
finer and finer, continuous variations of the potential barrier and the effective mass will be
recovered. Assuming that xc and xd are classical turning points, xb and xf are the truncation
points far away from the turning points. To apply the analytical transfer matrix method, we
divide the regions (xb, xc), (xc, xd) and (xd, xf ) into l, p and q layers with the width d. The
transfer matrix corresponding to the ith segment can be written as [15]

Mi =
[

cos(kid) −mi

ki
sin(kid)

ki

mi
sin(kid) cos(kid)

]
, i = 1, 2, . . . , l + p + q, (2)

where ki = √
2mi(E − Vi)/h̄. ki and Vi represent the wave number and the potential energy

at the ith segment, mi is the effective mass of the particle in the ith region. E is the energy of
the incident particle.
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In problems where the carrier mass changes abruptly during tunnelling, e.g., in tunnelling
from InGaAs through InAlAs etc, the continuity of ψ(x) and ψ ′(x)/m(x) has to be considered
at the heterointerfaces. Applying the boundary condition, we get the matrix equation[

ψ(xb)

1
mb

ψ ′(xb)

]
=

l+p+q∏
i=1

Mi

[
ψ(xf )

1
mf

ψ ′(xf )

]
, (3)

where ψ(xb) and ψ(xf ) are the wavefunctions at the left truncation point and that at the right
one, respectively. mb and mf are the effective masses at the truncation points.

We assume that a plane wave is incident from the left, and the wavefunction for x < xb

and x > xf can be written as

ψ(x) =
{

A0 exp[ikb(x − xb)] + B0 exp[−ikb(x − xb)], x < xb

C0 exp[ikf (x − xf )], x > xf ,
(4)

where kb = √
2mb(E − V (xb))/h̄, kf = √

2mf (E − V (xf ))/h̄, and A0, B0, C0 are the
amplitude coefficients to be determined.

On applying the boundary conditions that the wavefunction and its first derivative divided
by the effective mass are continuous at the boundary between the two neighbouring layers, we
obtain [

ψ(xi)

1
mi

ψ ′(xi)

]
= Mi+1

[
ψ(xi+1)

1
mi+1

ψ ′(xi+1)

]
, i = 0, 1, . . . , l + p + q − 1, (5)

where xi = xb + id(i = 0, 1, 2, . . . , l + p + q), and the prime denotes differentiation
with respect to x. Both sides of equation (5) are simultaneously multiplied by the matrix
[−ψ ′(xi)/mi, ψ(xi)], then divided by ψ(xi)ψ(xi+1); hence equation (5) is changed into the
form [

− 1

mi

ψ ′(xi)

ψ(xi)
, 1

]
Mi+1

[
1

1
mi+1

ψ ′(xi+1)

ψ(xi+1)

]
= 0. (6)

Defining

Qi = −ψ ′(xi)

ψ(xi)
, (7)

we get

Qi+1

ki+1
= tan

[
arctan

(
mi+1

mi

Qi

ki+1

)
+ ki+1d

]
, i = 0, 1, . . . , l + p + q − 1. (8)

Equation (8) can be written as

ki+1d = nπ − arctan

[
mi+1

mi

Qi

ki+1

]
+ arctan

[
Qi+1

ki+1

]
,

i = 0, 1, . . . , l + p + q − 1; n = 0, 1, 2 . . . (9)

where Qi are subject to the boundary condition, Q0 = Qb = −ψ ′(xb)/ψ(xb).
Summing the indices i from 0 to l − 1, we have

l−1∑
i=0

ki+1d + ζ = nπ + arctan

(
Ql

kl

)
− arctan

[
m1Q0

m0k1

]
, n = 0, 1, 2, . . . , (10)

where

ζ =
l−1∑
i=1

[
arctan

(
mi+1

mi

Qi

ki+1

)
− arctan

(
Qi

ki

)]
. (11)
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Considering the derivative of arctan (mi+1Qi/miki+1), we get

arctan

(
mi+1

mi

Qi

ki+1

)
− arctan

(
mi

mi

Qi

ki

)
= Qi

mi

ki�mi − mi�ki

k2
i + Q2

i

. (12)

Substituting Qi into the Schrödinger equation (1), we obtain

Q′ = (Q2 + k2) + Q
m′

m
, (13)

where Q′ = dQ/dx and m′ = dm/dx.
As the width of every segment layer tends to zero, equation (11) can be written in the

integral form by using equations (12) and (13):

ζ = lim
d→0

l−1∑
i=1

[
arctan

(
mi+1

mi

Qi

ki+1

)
− arctan

(
mi

mi

Qi

ki

)]

=
∫ xc

xb

(
Q

km′ − mk′

mQ′ − Qm′

)
dx. (14)

The first term in equation (10) can be integrated as
∫ xc

xb
k dx. It is clear that as d → 0, we

have

kl =
√

2ml[E − V (xl)]/h̄ →
√

2ml[E − V (xc)]/h̄ = 0. (15)

Meanwhile, Ql is positive, so arctan(Ql/kl) = π/2. This indicates that the half-phase loss
at the left turning point xc is π/2, where the electron moves from the potential well to the
potential barrier.

Equation (10) can then be written as∫ xc

xb

(
k + Q

km′ − mk′

mQ′ − Qm′

)
dx =

(
n +

1

2

)
π − tan−1

[
m1

m0

Q0

k1

]
, n = 0, 1, 2, . . . .

(16)

Q0 in equation (16) is related to the coefficients A0 and B0, and it can be obtained from
equations (4) and (7),

Q0 = ikb

B0 − A0

B0 + A0
. (17)

The reflection and transmission coefficients R and T, defined as

R = |B0|2/|A0|2 (18)

and

T = kf |C0|2/kb|A0|2, (19)

are related by

R + T = 1. (20)

The transmission coefficients, defined as the ratio of the power transmitted across the potential
barriers to the power in the incident energy, can be obtained from equations (17)–(20),

T = 1 − R = 1 −
∣∣∣∣ ikb + Q0

ikb − Q0

∣∣∣∣
2

, (21)

where the value of Q0 can be derived from the analytical formula (16).
For a given potential barrier V (x) and position-dependent effective mass m(x), the

accurate transmission probability can be obtained via our formula (16). Equation (16) is
our main result.
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Figure 1. (a) Parabolic barrier made of AlaGa1−aAs. (b) Transmission probability as a function
of the incident electron energy for the structure in (a).

3. Application to heterostructures

In this section we apply the formula of transmission probability from the analytical transfer
matrix method to potential barriers fabricated with semiconductor heterostructures. Various
potential barrier structures will be analysed to show the capability of our method.

The single-barrier structure is first analysed. The parabolic barrier fabricated with
GaAs/AlaGa1−aAs is shown in figure 1(a). The conduction-band offset was taken to be
60% of GaAs and AlaGa1−aAs � band-gap difference [16]. The parabolic barrier is 350 Å
thick. For the GaAs–AlaGa1−aAs (a : 0–0.5–0) system, assuming the variation of the
composition a is linear with the position x, we get

a(x) =
{

0.5(x/175) + 0.5 (−175 � x � 0)

−0.5(x/175) + 0.5 (0 < x � 175).
(22)

The effective mass m(a) for the system is dependent on the structure of the heterostructure,
which satisfies the following equation:

m(a) = (0.067 + 0.083a)m0, (23)



5776 Y He et al

where m0 is the free-electron mass. The composition a for GaAs is 0, so its effective mass is
0.067m0; while that for AlAs is 1, so the effective mass is 0.15m0.

Then the position-dependent effective mass can be described by

m(x) =




(0.083 × 0.5 × (x/175) + 0.083 × 0.5 + 0.067)m0 (−175 < x � 0)

(−0.083 × 0.5 × (x/175) + 0.083 × 0.5 + 0.067)m0 (0 < x < 175)

0.067m0 (x � −175, x � 175).

(24)

The maximum potential energy is 0.375 eV for the parabolic barrier, as shown in
figure 1(a). The potential energy as a function of the position x is as follows for the parabolic
barrier:

V (x) =
{−0.375(x/175)2 + 0.375 (−175 < x < 175)

0 (x � −175, x � 175).
(25)

The unit of the position x is Å
From our formula (16) for arbitrary shaped barrier, the transmission probability as a

function of the energy of the incident electron is obtained, which is shown in figure 1(b).
In our calculation we divide the parabolic barrier and the effective mass into 10, 100, 1000
segments respectively. The solid curve represents the transmission probability when the
potential barrier and the effective mass are divided into 1000 segments. The solid curve
increases from 0 to 1 rapidly, then remains flat for incident energy greater than 0.406. We
have magnified the flat curve and shown it in a semilog plot in the inset. We find the solid
curve oscillates around 1 slightly for incident energy greater than 0.406. This is due to the
quantum mechanical tunnelling. We have also magnified the region where the incident electron
energy is close to 0.375 eV in the inset of figure 1(b), which is the potential energy at the
top of the barrier. It is shown that the transmission probability increases with the increasing
incident electron energy, however, the transmission probability does not reach unity at the
top of the barrier. This is due to quantum mechanical reflection above the potential barrier.
When we divide the barrier and the effective mass into 10 segments, the obvious oscillatory
behaviour in the transmission probability is found. When we divide them into 100 segments,
the oscillatory behaviour in the transmission probability weakens. The electron wavelength
at the resonant states is 50 Å or so when the voltage drop value in the barrier is about 2.2 V.
When the number of the section layers approaches infinity, the layer width is much smaller
than the electron wavelength at the resonant states, and the calculated transmission probability
tends to the accurate value. Application of our formula to the single-barrier structure produces
good results.

There has been revived interest recently in the theoretical analysis of multibarrier
tunnelling structures. These structures have been attracting much attention in recent years
because of their electronic and optoelectronic properties. GaAs/AlAs double-barrier structures
exhibit a number of interesting features, including negative differential resistance, fast response
times and bistability in current–voltage response. We propose to calculate the transmission
probabilities for various double-barrier structures. The double-barrier structure with a
rectangular well made of GaAs and AlAs is shown in figure 2(a). The maximum potential
energy is 0.956 eV for the double-barrier structure. Position dependence of the effective mass
of the electron in the various barrier and well regions is considered. The effective masses
used are: 0.067m0 for GaAs, 0.15m0 for AlAs, where m0 is the free-electron mass. The
transmission probability for the double-barrier structure exhibits many resonance peaks, as
shown in figure 2(b). These results are in good agreement with those reported for the same
structures [8, 9].
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Figure 2. (a) Double barrier with a rectangular well made of GaAs and AlAs. (b) Transmission
probability as a function of the incident electron energy for the structure in (a).

Applications of our formalism to the above two tunnelling structures have fully proven the
validity of our method. The analytical transfer matrix formula (16) is exact in the tunnelling
through the barriers. As a third example, we apply it to another double-barrier structure
placed in an external electric field. It is to show intuitively the difference in the transmission
probabilities when the effective masses in different regions are included or not. This structure
consists of one 10 Å thick layer of a semiconductor B being sandwiched between two
10 Å thick layers of another fictitious semiconductor A, which are further sandwiched by
thick layers of heavily doped semiconductor B. The work-function potential of semiconductor
A exceeds that of B by 1.5 eV. The double-barrier structure with the applied field is shown
in figure 3(a). Assuming that the effective masses of the barrier and the well regions are the
same, which are 0.067m0, we get the transmission probability shown with the dashed curve in
figure 3(b). To examine the importance of including the variation of the effective mass into the
calculations, different effective masses in the semiconductors A and B are considered, which
are 0.15m0 for semiconductor A and 0.067m0 for B. The transmission probability is shown
with the solid curve in the same plot. The transmission probabilities for the two cases are
compared in figure 3(b). The profiles of the two curves are similar to each other, however the
maximum of the left peak is increased and the position of the left peak moves toward lower
energy when the variation of the effective mass is included. The difference in the transmission
probabilities for the two cases is obviously seen. The inclusion of the variation of the effective
mass reflects more truth of the tunnelling, and we come to the conclusion that the influence of
the effective mass should not be omitted. Comparing figure 3 with figure 2, we also see that
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Figure 3. (a) The potential barrier of the superlattice structure consisting of layers of
semiconductors A and B. (b) Transmission probability as a function of the incident electron
energy for the structure in (a).

the asymmetry of both barriers affects the calculated transmission probability greatly. The
breaking of the symmetry of the two barriers gives rise to a weakening of the resonances. The
presence of asymmetric potentials leads to a reduction of the heights of the transmission peaks
at resonance energies.

As shown above, our method is accurate in calculating the transmission probabilities in
double-barrier structures with linearly varying potentials. To demonstrate the capability of
our method for the double-barrier structure with non-linear potential, we further consider the
double-barrier structure with a parabolic well, which is shown in figure 4(a). The double-
barrier structure is fabricated with GaAs–AlaGa1−aAs (a:1–0–1). The parameter for the band
offset is the same as that in the first example. For this system, assuming the variation of the
composition a is linear with the position x, we get

a(x) =
{−(x + 50)/50 + 1 (−50 � x � 0)

(x − 50)/50 + 1 (0 < x � 50).
(26)

The effective mass m(a) for the system satisfies the following equation

m(a) = (0.067 + 0.083a)m0, (27)

where m0 is the free-electron mass. Then the position-dependent effective mass can be
described by

m(x) =



(−0.083 × (x/50) + 0.067)m0 (−50 � x < 0)

(0.083 × (x/50) + 0.067)m0 (0 � x � 50)

0.067m0 (x < −50, x > 50).

(28)
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Figure 4. (a) Double barrier with a parabolic well made of GaAs and AlaGa1−aAs.
(b) Transmission probability as a function of the incident electron energy for the structure in (a).

The maximum potential energy is 0.956 eV for the double-barrier structure, as shown
in figure 4(a). For the GaAs–AlaGa1−aAs (a : 1 − 0 − 1) system, the potential energy as a
function of the position x is as follows:

V (x) =
{

0.956(x/50)2 (−50 < x < 50)

0 (x � −50, x � 50).
(29)

The unit of the position x is Å.
In the double-barrier structure, the tunnelling resonance is found. As shown in figure 4(b),

the peaks of the transmission probability separate at regular intervals for a parabolic well. We
encountered in some of our calculations at very low values of incident energy numerical
instabilities around the resonance energies, which can possibly be removed by employing the
appropriate manipulation at energies close to the lower resonances. We divide the region near
the lower resonances into more layers, so that the resonant peaks at low values of incident
energy are not lost. In our practical manipulation the barrier is divided into 103 layers for the
incident electron energy varying from 0 eV to 0.01 eV, 103 layers for the energy from 0.01eV
to 0.1 eV and also 103 layers for that from 0.1 eV to 0.2 eV, which is done step by step. The
energy resonant peaks in a double-barrier system can be accurately obtained by the proposed
method.

Another attractive feature of the analytical transfer matrix method is its ability to evaluate
the eigenenergy of any potential well, which has been discussed in our previous results [15].
In the double-barrier structure with a parabolic well, the transmission probability reaches
its absolute maximum of unity at E1 = 0.121 eV, E2 = 0.390 eV, E3 = 0.629 eV and
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E4 = 0.912 eV, as shown in figure 4(b). The energy levels for the bound states of the included
potential well from our analytical transfer matrix method are E1 = 0.1211 eV, E2 = 0.3906 eV,
E3 = 0.6289 eV and E4 = 0.9125 eV. A comparison with the discrete levels of the included
potential well shows that these peak energies occur near the bound state energies. Note that
the transmission peak at the low energy (E1) is considerably sharper than that at high energy
(E2) in figure 4(b), indicating that the associated bound states are more tightly bound. These
results exhibit the striking effects of resonant tunnelling.

4. Conclusion

In conclusion, an alternative method for accurately calculating the transmission probability
across an arbitrary potential barrier with dependence on the space of the effective mass
is presented. This method differs from previous derivations in that mass variations from
layer to layer are explicitly taken into account. Furthermore, we give the analytical formula
describing the tunnelling properties on the basis of the analytical transfer matrix method.
Mass variations are directly included in the analytical formula. Single-barrier and various
double-barrier structures are analysed to confirm the validity and usefulness of the proposed
method. Agreement is reached among the results obtained by our method and other methods.
Various potential barriers, including continuous variations of potential and effective mass, can
be analysed easily by using the present method. The method is universal and exact. With
our analytical transfer matrix method, we can correlate the energy location of the peaks of the
transmission probability with the bound state energies of the included potential wells. The
present technique is expected to be exploited for analysing and designing resonant tunnelling
and other quantum size effect devices.
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